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Abstract

Second- and higher-order derivatives are required by applications in scientific computation, espe-
cially for optimization algorithms. The two complementary concepts of interpolating partial deriva-
tives from univariate Taylor series and preaccumulating of “local” derivatives form the mathematical
foundations for accurate, efficient computation of second- and higher-order partial derivatives for
large codes. We compute derivatives in a fashion that parallelizes well, exploits sparsity or other
structure frequently found in Hessian matrices, can compute only selected elements of a Hessian
matrix, and computes Hessian x vector products.

1 Introduction

Discussions of automatic differentiation for computing first-order partial derivatives and Taylor
coefficients of arbitrary order have appeared in the literature regularly over the past 30 years [5,15,
16,23,24,30]. Juedes [20] includes a survey of 29 software packages for automatic differentiation. In
this paper, we describe two concepts:

1. interpolation of partial derivatives from an ensemble of Taylor series of single independents,
and

2. preaccumulation of “local” derivatives at the statement or scalar function level.

The complementary concepts of interpolating partial derivatives from univariate Taylor series and
preaccumulating “local” derivatives form the mathematical basis on which to build a software tool
capable of efficiently computing accurate second- and higher-order partial derivatives for large codes.
This is a significant new capability: neither symbolic tools nor divided difference approximations
can deliver that capability.

Our focus 1s on second-order partial derivatives as required by optimization software. Our ap-
proach for the efficient computation of second derivatives has the following characteristics:

Enhances Parallelism: Any parallelization or vectorization built into the original code is main-
tained. The additional code for computing first- and second-order derivatives increases the
scope for efficient parallelization.

Utilizes Structure: The generated code takes advantage of the sparsity that is often present in
Hessian matrices.
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Computes Hessian x vector: The generated code can compute a Hessian x vector product di-
rectly in a manner that is much more efficient than first computing the Hessian and then
multiplying.

Allows Slices: It is possible to compute selected elements of the Hessian without computing the
entire matrix. This capability allows for run-time storage trade-offs when the Hessian is too
large to compute the entire matrix at once, or if the application requires only some of the
elements (the diagonal, for example).

Supports Vector Functions f : R" — R™: A separate Hessian is computed for each component
with one invocation of the tool, subject only to limitations of memory size. This is necessary
for many optimization algorithms and for efficient parallelization.

Provides a Growth Path: The framework for computing second-order derivatives generalizes to
higher-order derivatives.

In Section 2, we outline the need for second- and higher-order derivatives in scientific computa-
tions, especially in optimization, and point out some of the reasons for the increased computational
complexity of second derivatives. In Section 3, we describe automatic differentiation applied to the
naive propagation of gradients and Hessians in the forward mode. In Sections 4 and b, we present
the two contributions of this paper: the interpolation of partial derivatives from univariate Taylor
series and the preaccumulation of “local” derivatives, respectively. Section 6 shows how to access
second derivatives, to exploit sparsity, to compute subsets of a Hessian, and to compute Hessian
x vector products. In Section 7, we generalize the second-derivative results to the computation
of higher-order mixed partial derivatives. Finally, we outline conclusions and directions for further
research.

2 Need for High-Order Derivatives

Second- and higher-order derivatives are required by applications in scientific computation, es-
pecially for optimization algorithms.

2.1 Derivatives in Optimization

The primary motivation for adding the ability to compute second derivatives comes from opti-
mization. Given f : R" — R, unconstrained optimization algorithms minimize f locally by solving
Vf = 0 using a Newton or a secant-type iterative method [12,13]. The Newton iteration requires
the Hessian V?f. In nonlinearly constrained optimization, the curvature of the constraint surfaces
is represented by the Hessians VZ¢; of the active constraints ¢;(z) = 0. Often, all these second
derivatives are aggregated into the Hessian of the Lagrangian

VL=V 43 A Vi,

where the Lagrange multipliers A; are derived in some way from first-derivative information, that is,
the gradients of the objective and the active constraints. In most large-scale optimization problems,
the Hessians of the objective and constraints are sparse or otherwise structured.

Moreover, many optimization codes require at various stages of the calculation only limited
second-derivative information, for example:



VZLv Hessian x vector products for iterative solvers
vIV2Lv Second directional curvature in line search
Diag(V2L) Diagonals for preconditioning of equations
ViLZ One-sided projection onto tangent space

VARVES VA Two-sided projection onto tangent space

Here, v is an arbitrary vector, and 7 is a rectangular matrix whose columns span the orthogonal
complement of the active constraint gradients. Another interesting optimization technique that
involves selected second-derivative information is the use of merit functions that are both smooth
and exact [14]. That is, that obtain unconstrained minima exactly at the constraint minimizers.
Williamson uses exact Hessian values in a nonlinear programming algorithm [31].

Secant methods for approximating second derivatives have been quite successful in the context
of unconstrained optimization. For problems of this type, they are considered a useful alternative
to the true Hessian, partly because they reduce the linear algebra effort per step from O(n3/3) to
O(n?) in the dense case. However, this saving is lost in the nonlinearly constrained case, and the
determination of a successful approximation to the Hessian of the Lagrangian is still an open research
question. One primary reason is that approximating the Hessian in constrained optimization is a
much more complicated problem than approximating the Hessian in unconstrained optimization,
since the Hessian of the Lagrangian is not necessarily positive definite even at the solution.

The other strong motivation for using the analytical Hessian is that it often has a great deal of
structure that a secant approximation cannot take into account. For example, in many applications,
the Hessian is very sparse, and by exploiting this sparsity, the computation the true Hessian is not
expensive. Currently, this structuring 1s done by hand in some applications. Hence, it is important
that a tool for computing second derivatives support sparse computations.

Software for solving problems in unconstrained optimization (Dennis and Schnabel [12], for ex-
ample) often views analytic second-derivative information as optional, but desirable. If the user is
able to supply code for computing V2 f, the algorithms often display the quadratic convergence rate
of Newton’s method, rather than the superlinear rate of the secant method. Writing code for the
analytic second derivative is a tedious and error-prone process, even for problems of modest code
size like those in the Hock and Schittkowski [19] or the MINPACK-2 [3] test suites. For applications
such as multidisciplinary optimization [27,28] where the code defining the function f may be tens of
thousands of lines long, hand-coding even V f is unthinkable. Software for constrained optimization
has viewed analytic second-derivative information as so difficult to supply that only Williamson’s
code [31] even provides the opportunity for a knowledgeable user to supply it. The techniques out-
lined 1n this paper make the computation of accurate second-derivative information feasible. With
this information, software for unconstrained optimization can routinely use second derivatives to
attain quadratic convergence, and software for the constrained case can be redesigned without being
restricted to Hessian-free algorithms.

Third-, fourth-, and higher-order partial derivatives are required by some algorithms for solving
potentially degenerate nonlinear systems or for nested optimization problems. Berz [6] and Mich-
elotti [22] discussed the problem of beam tracing in the Superconducting Super Collider. In that
application, up to m = 10 derivatives in n = 6 variables are needed to describe the physical system.
As scientists understand that high derivatives can be feasibly obtained when n is reasonably small,
more applications requiring such high-order partial derivatives may be recognized, and algorithms
may be developed that efficiently utilize higher derivatives.



2.2 Cost of Complete Jacobians and Hessians

Using the reverse mode of automatic differentiation, one can compute the gradient of a scalar
function for no more than five times the arithmetic operations needed to evaluate the function
itsell [4]. However, this result does not extend to the Jacobians of vector functions. By applying
the cheap gradient result to each component of the vector function, one can bound the total cost
of evaluating the Jacobian by no more than five times the sum of the costs of evaluating all of the
component functions separately. This total cost is often much larger than the cost of evaluating
all components of the vector function simultaneously, where common subexpressions need to be
calculated only once. For vector functions that are themselves gradients of f, such joint terms are
typical. As an example, let us consider the sum of squares residual

fa) = 5Irll3, = Az —b,

where A is a matrix, and b is a vector of compatible size. The complexity of evaluating » and its
norm f 1s given by the number of nonzero elements in A, which we assume to be significantly larger
than the number n of independent variables. The gradient and Hessian of f are given by

Vf=ATr, VIf=ATA.

The entire vector Vf can be evaluated for exactly twice the effort of calculating r. Evaluating
just one component of V f separately costs half as much, since the intermediate vector r» must be
calculated first. Hence, the cheap gradient result applied to each component of V f implies that
the Hessian can be calculated for no more than 5n times the effort of evaluating ». The factor b
in that bound can be left off, but otherwise it provides a realistic estimate. Thus, we conclude
that Hessians can indeed be up to O(n) times as expensive as the underlying scalar function and
gradient. Moreover, the Hessians may have little or no sparsity, even if there is a lot of structure.
For example, if A is the identity appended with one additional dense row, then the Hessian V f is
dense.

2.3 Partitioning and Parallelism

Independent of what methodology one adopts for the evaluation of Jacobian and Hessian ma-
trices, both run-time and memory requirements will usually grow at least linearly with the number
of independent variables. Now suppose the simultaneous differentiation with respect to all n inde-
pendent variables on one processor takes too long and/or requires too much memory. Then, one
may partition the independent variables into a family of groups with no more than some p < n
elements and perform several derivative evaluation runs, either in parallel on several processors or
successively in a serial mode. For first derivatives, this partitioning approach can be adopted quite
easily, for example, by utilizing the interface of ADIFOR (Automatic Differentiation In FORtran) [7]
or ADOL-C (Automatic Differentiation Of aLgorithms written in C) [18].

Each pair of independent variables that corresponds to a nonzero entry in the Hessian must occur
together in at least one of the groups. In graph-theoretical terms, this requirement means covering
the connectivity graph of the sparsity pattern by a set of subgraphs with no more than p nodes such
that each edge occurs in at least one of the subgraphs. In the dense case, the graph is a clique with
n(n —1)/2 edges. Since each p-element subgraph has at most p(p — 1)/2 edges, one needs at least

differentiations with respect to groups of no more than p independent variables to calculate the
Hessian in parallel or sequentially in pieces.



If p is even and divides n, then the following scheme comes within a factor of two of this lower
bound. Partition the independent variables into 2n/p fixed subgroups of p/2 elements each. There

are
2n n n\?
— =1 —=2( -
p p p

pairwise combinations of subgroups, each forming a group of p elements. Spreading the evaluation
of a dense Hessian in time or across processors increases the (serial) complexity at most by a factor
of two. Since no communication is necessary at all, linear speed up is achievable on any multi-
processor. Hence, roughly the same complexity growth by a factor of two must occur if the Hessian
is simply treated as the Jacobian of the gradient, disregarding its symmetry.

It is not immediately clear how the simple scheme sketched above can be adopted to the sparse
case. In this paper, we will propose a scheme that makes full use of sparsity and can be partitioned
to any level without any communications overhead.

3 Forward-Mode Hessians

Automatic differentiation 1s a well-known technique for the accurate, efficient computation of
derivatives [15,16,17,21,24]. Tt is neither symbolic nor based on potentially unstable finite-difference
approximations. It propagates values according to the familiar rules of calculus. There are two
fundamental modes for propagating derivative values: the forward mode that we use here, and the
reverse mode (see [15]).

One could use the forward mode of automatic differentiation to compute the gradient and the
dense Hessian of f by propagating the first- and second-derivative objects strictly in the forward
mode [25]. We describe how this would be done to show that the combination of preaccumulation
and interpolation yields much more efficient code.

Suppose that 4 and v are active variables (they depend on values of independent variables). The
values of Vu, Vv, VZu, and VZ?v have been computed along with the values for u and v. As an
example of a typical operation, suppose that f = u -v. Then by the chain rule, we have

f = wv
Vf = u-Vv+Vu-v
Vif = u- V4 Vu- (Vo)' + Vo (Vu)' +v- Vi

Table 1 gives the computational complexity for the * operator.

Table 1. Computational complexity of the * operator

Cost +’s *g
Function 0 1
Gradient n 2n
Hessian 1.5n(n+1) n(n+1)

The complexity of the other operators is similar, differing only in the constants. The storage com-
plexity for the naive forward propagation of Vf and V2f is proportional to n?/2 times the storage
required for computing f.

The time and storage complexity for the naive forward propagation contrasts sharply with the
corresponding complexities for the univariate Taylor series whose complexities are a small multiple
of (the number of nonzero elements of VZf) x (the corresponding costs for f).

The alternative of reverse mode propagation of adjoint values [15] is attractive for computing
gradients, but for the highly structured Hessians and higher-order derivatives, the forward mode is
satisfactory.



4 Interpolating Derivatives from Taylor Series

The two central ideas of this paper are described in this section and the next. In this section,
we compute second-order partial derivatives by interpolation from sets of three-term univariate
Taylor series. The interpolation scheme for second-order partial derivatives is a special case of an
interpolation scheme for arbitrarily high-order mixed partial derivatives, thus providing a natural
growth path for any software tool based on this method. This treatment was inspired by a remark
by Rall [26].

In the following section, we show how the preaccumulation of local derivatives complements the
interpolation scheme, yielding an efficient method for computing second-order partial derivatives.

Let us consider the example that we have two independent variables z and y. We wish to compute
the three distinct second-order partial derivatives of f : R* — R. The two-dimensional Taylor series
tells us that

f(xO‘i'hxayO'i’hy) = f(hxahy)

o (17 3) (B ) roteenn. o

where all derivatives of f are evaluated at (2, yp). For the special case hy = hy = h, we obtain

fleo+h,yo+h) = f(h)
F@o,yo) + (fo + fy) - hd (Fow + Fyy + 2fey) - R7/2+ 0 (R%) . (2)

Because of the uniqueness of the Taylor series, f(h) is the same as the univariate Taylor expansion
in the direction v = = + y:

f(h) = f(20,y0) + hfu + h* fuu/2. (3)
Equations (2) and (3) imply that

Ju=Jo+ fy and fuu = feo + Qfxy + fyy

Hence

and the three distinct second-order partial derivatives of f can be recovered from values computed
as three univariate Taylor series.

In general, let f : 2 € R® — y € R. We wish to compute the gradient Vf and the Hessian
V2f. Assume that we know the locations of the p nonzero elements of V2f. Let I(i,j) map the
index pairs (4, j) corresponding to nonzero Hessian elements into 1...p. For each active variable w,
we propagate the value w := w(z +1t - u)|;=¢ and the two p-vectors w’ and w” containing values for
the first and second terms, respectively, of the Taylor series for w(t)|t=g. Here, u represents the p
directions corresponding to the nonzero elements of V2 f,

| oe fori=j L. a%f
u _{ e +e; forid } for all (4, ) s.t. Feidz,; +0,

and ’ denotes differentiation with respect to ¢. The propagation of first and second derivatives
parallelizes in the p-direction. That is, for both vectors w’ and w', there is no interaction between
the p different elements. Hence, we omit indexing of the vectors w’ and w', except in an example
where we use square braces w’'[i] to denote indexing across directions.



The Taylor series give us the first derivatives and the diagonal entries of the Hessian. The
off-diagonal Hessian entries are recovered by interpolation as suggested by Equation (4):

aijx] = 0.5(w"[(i, /)] = (w"[i(i, D] + w" {1, ) ®)

In contrast to the naive forward propagation of Hessian matrices described in Section 3, the
computation of Hessians as an ensemble of univariate Taylor series has the following advantages.
The univariate Taylor series approach

e handles sparse Hessians by generating series only for nonzero entries,

e handles very large Hessians by generating elements in multiple sweeps,

e can generate arbitrary elements with little redundant computation,

e parallelizes and vectorizes,

e uses simple data structures — scalars and vectors, rather than symmetric matrices,

e is easier to understand when coding individual operators, and

e generalizes to higher derivatives (see Section 7).
In exchange, some computation is necessary to extract off-diagonal entries according to Equation (4),
but that process is only done once at the end of the computation.
5 Preaccumulation of Derivatives

In the preceding section, we described an interpolation scheme for computing high-order deriva-
tives from values obtained by propagating ensembles of univariate Taylor series. In this section,
we discuss the second major contribution of this paper: the preaccumulation of derivatives. The
preaccumulation of derivatives allows us to extend the results of the preceding section, where it
was 1mplicitly assumed that we were dealing with binary operations or unary elementary functions.
Here, we cover complicated expressions in assignment statements, embedded function calls, or even
basic blocks of code.

Let the variables y and z depend on a vector x of independent variables. The first and second
derivatives Vy, Vz, V?y, and V22 are available from earlier computations. If w = f(y, z), the chain
rule tells us that

Vw = g—Z~Vy—|—g—l:~Vz, and
0 0
Vie = %~V2y+a—f~vzz (6)
O*w 9 *w *w 9
—|—W~(Vy) +26yaz~Vy~Vz+W~(Vz).

Hence, if we know the “local” derivatives (2—1;, %—f) d (gjﬁ), (,?;gz, %2;5
y, we can easily compute Vw and VZw, the derivatives of w with respect to z. An example of
Equation (6) is given in Equation (7) for the simple case w = f(y,z) = y - z. Equation (6) for
propagating Taylor series has the much simpler form given by Equation (8).

The idea is that the large “global” derivatives Vw are propagated in the forward mode from one
assignment statement to another, while the scalar “local” derivatives (g—;’, %—f) are preaccumulated

independently of the larger flow of control from one statement to the next. ADIFOR was the first

) of w with respect to z and



tool for automatic differentiation to use preaccumulation of local derivatives by applying the reverse
mode at the statement level for the efficient computation of first derivatives [7,9]. The hierarchy of
“local” and “global” derivatives extends to higher-order derivatives.

Consider the alternatives for computing first- and second-order derivatives of an active variable
w that 1s given by an expression involving k active variables:

w= f(s1,82,...,8k).
There are two alternatives for computing w’: and w”

1. parse the expression for f, and propagate first- and second-order derivatives for each interme-
diate quantity; or

2. preaccumulate first- and second-order derivatives of f with respect to its local independent
variables, and use the local derivatives to compute w’ and w”.

All currently existing automatic differentiation software that can compute second-order derivatives
uses the first alternative. We will see that these two alternatives lie at opposite ends of a spectrum.
Each 1s optimal in operation counts for some expressions. We advocate a mixed strategy.

Next, we describe the two alternatives for computing w’ and w” in more detail.

5.1 Parse f and Propagate Derivatives for Each Intermediate

As is common in the automatic differentiation literature (see [15,24], for example), suppose that
f has been parsed into a sequence of ¢ unary and binary operations with operands either sy, ...,
st or else earlier intermediate results. Then in our case, the parsed code 1s annotated with code
for generating the first- and second-order Taylor coefficients. As an example of a typical operation,
suppose that f =y - z:

fr= 9=
o=y 4y (7)
f// — y'Z//+2y/ 'Z/+y// .2,

(Comparison with the code in Section 3 for forward-mode Hessians shows why univariate Taylor
series are preferred.) The important point to note about evaluating operators of this form is that
there are 2¢ vector loops of length p.

The storage cost of propagating derivatives for each intermediate result is 2p times the storage
requirements of f. The operation count for propagating derivatives for each intermediate result is
about bp times the operation count for evaluating f itself.

The special case in which f is a linear function of active variables w = f(s1,...,85) = > a; - 84,
where the a; are constants, deserves special attention:

w = E a; - §;
! § : !

w = a; - §;
" § : "
w = a; - S§; .

For assignment statements of this form, propagating derivatives by parsing into unary and binary
operations is faster than the method of preaccumulation described in the following section.



5.2 Preaccumulate First- and Second-Order Derivatives

If w= f(s1,...,5), let Vf and V2f denote the “local” gradient and Hessian, respectively, of f
with respect to s1,...,s;. If we extend Equation (6) to complicated right-hand sides and to second
derivatives, we get

w = f(Sl,...,Sk)
k

N S
i=1

= VfT s’ (8)

k k

T— Z (VF)i-s" +s' Z (V2 F)ij - s5]
i=1 Jj=1

— va ~5//—|-5/T~V2f~5/.

Equation (8) represents derivatives in each of the p directions, which may be computed in parallel.

The important point to note in Equation (8) is that there are only two vector loops of length
p, independent of the numer of variables or operations on the right-hand side of the assignment
statement. The local k-element gradient V£ and the local k?-element Hessian V2 f can be computed
in any manner. We may apply preaccumulation again to less complicated subfunctions, or we may
use the forward mode, the reverse mode, a combination of the two, or analytic formulas, if they are
easy to derive.

The storage cost of preaccumulating local derivatives is about 2p times the storage allocated by
f, plus k + k2, where k is the largest number of active variables appearing on the right-hand side of
any assignment statement. Usually, k£ << p.

The operation count for preaccumulating local derivatives is about (3k + k?)p, plus the cost of
computing the local derivatives. In practice, many elements of the local Hessian V2f are zero, and
computations can be omitted.

The special case in which f is a composition of nonlinear functions of a small number of active
variables (eg. w = exp(s]?)) deserves special attention. For this example, the method based on
parsing given in the previous section requires 4 vector loops of length p, while the preaccumulation
method requires only 2 vector loops of length p. Further, the bodies of the loops, as well as the
computation of the local derivatives, are relatively simple.

A successful tool for second-order partial derivatives satisfying the requirements given in Section
1 can be built using either the method of propagating derivatives for each intermediate result or the
method of preaccumulating local derivatives. The examples given here show that neither method,
by itself, is optimal. Hence, we prefer a mixed strategy. For example, suppose a code computes
conductivity as an ugly nonlinear function of an average of values from 7 nearest neighbors in a
three-dimensional grid such as

w = eXp(a(Sdown + Sup + Seast + Swest + Ssouth + Snorth + 506nte7‘))~

The method based on parsing to unary and binary operations generates 6 intermediate results and
14 vector loops of length p. The method of preaccumulation generates only 2 vector loops, but the
local Hessian has 49 nonzero entries which must be accumulated and then accessed inside the loop
bodies. On the other hand, rewriting the expression as

wy = a(sdown + Sup + Seast T Swest T Ssouth T Snorth + Scenter)
w = exp(wr)

yields generated code with only 4 vector loops. The local “Hessian” for the second assignment is a
scalar instead of a 7 x 7 matrix. The advantage is much more pronounced if exp is replaced by a
more complicated nonlinear function.



The characterization of expressions for which preaccumulation is best and those for which parsing
to elementary operations is best is a question that is under continuing study.

6 Structured Evaluations

In this section, we describe how users of our approach are able to access second derivatives, to
exploit sparsity, to compute subsets of a Hessian, and to compute Hessian x vector products.

6.1 Seeding to Exploit Sparsity

Let us assume that we have independent variables z;, ¢ = 1,...,n. If we are interested in
computing all nonzero entries in the Hessian, then we set #;/[{] = #;'[{] = 1 for { = (4, j), the index
function discussed in Section 4. The other first- and all second-directional derivatives z;"[{] are set
to zero, since clearly

82902»

6l‘j6xk

=0 for all 2,7, k.

For example, suppose that n = 5 and that V2f has the sparsity structure

X
X X

Vif= x 0 x
x x 0 x
x 0 0 x x

Then, the first-derivative Taylor series are initialized as follows. The order does not matter. We
illustrate using column-major order for the nonzero elements of the lower triangle of the Hessian
matrix.

Direction Index of Nonzero

Index [ Hessian Element 1’ xo' x3’ x4’ x5’
1 (1,1) 1 0 0 0 0
2 (2,1) 1 1 0 0 0
3 (3,1) 1 0 1 0 0
4 (4,1) 1 0 0 1 0
5 (5,1) 1 0 0 0 1
6 (2,2) 0 1 0 0 0
7 (4,2) 0 1 0 1 0
8 (3,3) 0 0 1 0 0
9 (4,4) 0 0 0 1 0
10 (5,4) 0 0 0 1 1
11 (5,5) 0 0 0 0 1

The number of nonzeros in the Taylor coefficients for x; is exactly the number of nonzeros in column
¢ of the lower triangle or in row ¢ of the upper triangle of the Hessian matrix. In this example, the
number of distinct nonzero elements in the Hessian matrix is p = 11. All second-order derivatives
are initially set to 0. That is, #;"[{] = 0.

On return from the subroutine that has been generated for computing first- and second-order
derivatives, f and the p-vectors f' and f” contain the first three terms of the univariate Taylor series
in the p directions corresponding to the nonzero entries of the Hessian. The elements of the Hessian
themselves are reconstructed from Equation (5).

10



6.2 Computing Slices

By “slices” we mean a structured subset of the entire Hessian matrix. For example, one might
need the diagonal elements, a single row, a set of rows (or columns), or a square submatrix. The use
of univariate Taylor series makes it easy to compute only selected elements of the Hessian matrix.
Equation (4) shows that in order to extract the element (VZf); ;, one need only to propagate
univariate Taylor series in the three directions z;, z;, and u = z; + ;.

6.3 Computing Hessian x Vector

The components of the vector V2f x v are not Taylor coefficients themselves. However, they can
be readily propagated by using univariate Taylor series. The key observation is that since

fle4tv)=fle) +t(VH v+ %tszVva,
seeding (without loss of generality) the first component of #;" = v;,i = 1,...n, yields

f = (VT v, and
f// — UTVZfU.

This is a generalization of the seeding that we have done so far, where v = ¢; or v =1¢; +¢;. In
particular, for z = v + ¢;, we obtain

of

VA T

o= (VH'w+ _31‘]' , and

1 _ TvZ azf 2 TvZ 9
/o= f“*axﬁ* e; Vfu. (9)

Equation (9) contains the information that we are looking for, namely, e]»TVva, the jth com-
ponent of the Hessian-vector product VZfv. Hence, after computing a Taylor series each for
u = v,u = ¢;,u = v+ ¢; and indexing the coefficients in that order, we can recover e]»TVva
as

V2o = 05(F I+ i+ 10— (F'T + 11— f11]). (10)

The subscript indicates the direction with respect to which the Taylor series was initialized. Hence,
for n variables, we need to compute Taylor series for

V,€1,...,€6p, 0+ €1,...,0+ €pn.

For maximum efficiency, two Taylor series evaluations can be saved. Let us assume w.l.o.g. that

n
€1 =V — E €5,
i=2

Then
n
efvzfv =oV2fv — Z aieiTVva.
i=2

Exploiting this fact, the computation of a Hessian-vector product requires the evaluation of 2n — 1
Taylor series, a slight advantage in complexity over divided differences. This complexity compares
very favorably with the n(n 4 1)/2 Taylor series required to compute the full, dense Hessian.

A generalization of this scheme allows us to compute the product of the Hessian with a rectangular
matrix Z.

11



7 Higher-Order Derivatives

Our primary interest in this paper has been in second-order derivatives, but the techniques of
interpolation from univariate Taylor series and of preaccumulation of local derivative values can be
generalized to higher-order derivatives. In this section, we survey the propagation of Taylor series of
a single variable which forms the basic building block we then apply to the computation of high-order
mixed partial derivatives.

7.1 Univariate Taylor Series

We briefly survey the propagation of Taylor series of a single independent variable w = f(t). A
discussion of univariate Taylor series demonstrates that in this restricted context, the computation
of derivatives of arbitrarily high order is well understood (see [23] or [24], for example). The in-
terpolation scheme described below shows how arbitrary partial derivatives of a function of many
independent variables can be efficiently computed from the much simpler univariate Taylor series
case.

With a few exceptions [6,29], the automatic evaluation of higher derivatives has been restricted
to cases with one independent variable. The k-th derivatives are usually scaled by 1/k! to store
Taylor coefficients. Scaling by 1/k! reduces operation counts and reduces the risks of overflow. If
the client algorithm actually wants derivatives, the Taylor coefficients can be rescaled at the end of
the computation. The forward propagation of truncated Taylor series with m terms requires O(m)
arithmetic operations and memory accesses for each addition or subtraction operation and (m +
1)(m+2)/2 arithmetic operations for each multiplication, division, or special function evaluation [23,
24]. We may use the factor of (m + 1)(m + 2)/2 as a measure of the cost ratio between the forward
propagation of m-term series and as a means for evaluating the underlying function.

The use of Fourier transforms and other fast convolution methods yields the product of two
polynomials with an asymptotic complexity O(mlogm). One could determine for each value of
m the best scheme for each computing environment, exploiting the obvious vectorizability. In this
paper, we will continue to use O(m?), rather than the theoretical O(mlogm) as the complexity of
multiplication, and consequently as the estimate for the cost ratio. The use of the larger asymptotic
bound is justified because we are primarily concerned with relatively low-order derivatives (Hessians
are second order) and because the generation of Taylor series one term at a time for ODEs is not
known to yield to Fourier transform techniques.

Figure 1 illustrates the forward propagation of Taylor series of a single independent variable,
where we store the Taylor coefficients U; := u(i)(t)/i!. We give only the code corresponding to the
simple assignment statement w = —y/(z * z) using a parsing of the expression into a sequence of
elementary unary and binary operations.

So = _YO
TO = ZQ*ZQ
WO = So/To
S; = =Y, fori=1,...,m
T, = > Zj*Zioy fori=1,..,m
j=0
Wi = [Si=Y Wi «Ty | /Ty fori=1,...,m

ji=1

Figure 1. Forward propagation of univariate Taylor coefficients
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The appropriate recurrence relations for each operation or elementary function are given by Moore [23]
or by Rall [24]. Multiplication of two polynomials of degree m (or, equivalently, the convolution
of their coefficients) is the central workhorse of all higher-derivative calculations [11], including the
multivariate case and the reverse mode. Hence, it is important for the performance of automatic
differentiation that the core routine for multiplying two polynomials be implemented with maximal
efficiency for each m, much as dense linear algebra computations rely on efficient implementations
of the BLAS [2,1].

In the next section, we show how the relatively simple recurrence relations for univariate Taylor
coefficients as illustrated in Figure 1 can be used to compute mixed partial derivatives of any order
for multivariate functions of interest in such applications as optimization.

7.2 General Interpolation Scheme

Equation (5) is a special case of a general-purpose, efficient scheme for computing high-order
partial derivatives from values obtained by propagating univariate Taylor series, which we describe
here. The general scheme may be applied in the future to extend the capabilities of the source
transformation tool to support higher derivatives.

A polynomial P of degree m in n variables is uniquely characterized by its values at the grid-
points

n
i=(i1,d1,...,0n) with 0<id; and > ij<m.
ji=1
Given the values P(i) at these grid points, the value of P at any other point # € R” can be obtained
by the simple Lagrangian interpolation formula:

P(x)= Y Li(e) PG)/Lild), (11)

OSi,eTiSm
where e denotes the vector of 1’s and
J<m j<ia J<ij Jj<in
Liw)= [[ "o =) [T @ =i - [T =5y - [ @a=9)
j>eTl j=0 j=0 j=0

is the unique polynomial (up to scaling) of degree m that vanishes at all gridpoints except i. In
practice, this polynomial should be converted into a more efficient representation.
Now, we sketch how the grid values P(i) of a Taylor polynomial

P(x) = f(x) + 0O (|l2]™*)

can be obtained by using a bundle of univariate Taylor expansions.
A polynomial of degree m in n variables contains

b(n+m—1,m) = <n+m—1)

m

terms of the highest order (i.e., m). The corresponding variable exponents form multi-indexes k
with e’k = m. These n-vectors may be interpreted as grid points in the domain of f (see Figure
2), and we can calculate the univariate Taylor polynomials

Py(t) = f(t - k) + O™

by automatically differentiating the program that defines f at ¢ = 0. The functions P, represent
restrictions of P to lines running through the origin. For each i,

P(t-k) = Py(t) with ¢ € R.

13



A

Figure 2: Interpolation grid with lines and hyperplanes for m =4 and n = 2

The lines ¢ - k intersect each of the m hyperplanes
H; ={zeR" celz=jyforj=1,2,...,m

in b(n + m — 1, m) points. Some of these intersection points correspond to the cubic grid points
1 C R" considered above, but many of them do not. To obtain the value of P at a general grid point
i, we can interpolate P on the hyperplane H; with j = eTi. On this (n — 1)-dimensional subspace,
the intersections with the lines ¢ - k form a regular grid of b(n — 1 + m,m) points at which the
values of P are known. The number b(n — 1 4+ m, m) corresponds exactly to the degrees of freedom
of an m-th degree polynomial with n — 1 variables, the restriction of P to H;, in this case. With
respect to suitable internal coordinates, the intersection points form a cubic grid. The Lagrangian
formula (Equation (11)) can be applied to obtain the values P(i) for all grid points i with eZi < m.
Subsequently, we may use the values P(i) to interpolate P(z) for arbitrary « € R"”. This is an
argument for feasibility; it may be possible to replace this two-stage interpolation procedure with a
more efficient scheme. Further possible savings do not affect the complexity.

It was shown above that we must propagate b(n+m—1,m) univariate series for general n and m.
Consequently, the complexity ratio for the interpolation approach versus the conventional approach

18
mxn

< mi
o S min{n, m}

in terms of storage and

(n+m—-1)n+m-=2)...n
2n+m)2n4+m—1)---2n+1)

q(n,m) = %(m+2)(m+1). < %

in terms of arithmetic operations per convolution. If there is not enough storage to compute all
the univariate expansions in one pass, they can be calculated in groups over several forward sweeps.
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The interpolation method promises great savings in terms of arithmetic operations because ¢(n, m)
is monotonically decreasing in m and equals roughly m?/27*! when n is significantly larger than
m. Thus, we have an exponential complexity reduction in terms of m.

8 Conclusions and Future Research Directions

ADIFOR (Automatic Differentiation In FORtran) [7,8,9] is a source translation tool implemented
by using the data abstractions and program analysis capabilities of the ParaScope Parallel Program-
ming Environment [10]. ADIFOR, accepts arbitrary Fortran 77 code defining the computation of a
function and writes portable Fortran 77 code for the computation of its first derivatives. Work is
in progress to extend ADIFOR to provide second- and higher-order derivatives as described in this

paper.
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